skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simmons, Brooke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plant defense and development are intricately interconnected. The putative RNA binding protein FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) was previously shown to play a critical role in regulating pathogen defense and flowering time in Arabidopsis. However, the molecular basis underlying the multifunctionality of FLK remains to be determined. Here we provide data to support a role of FLK in regulating reactive oxygen species (ROS) homeostasis, which is dependent on the primary catalase gene CAT2. The flk mutations confer reduced ROS burst upon elicitation and higher resistance to ROS-inducing stress conditions, including treatments with the herbicide paraquat, UV, and salinity. CAT2 is required for flk-conferred abiotic stress response and pathogen defense. We further demonstrate a negative regulation of the catalase enzyme activity by FLK. In addition, our data show that the ROS-regulatory role of FLK is independent of its function in flowering time control. Together our data illustrate a mechanism underlying FLK’s defense role and decouple the multifunctionality of FLK in defense and development in Arabidopsis. 
    more » « less
    Free, publicly-accessible full text available June 21, 2026
  2. Fortson, Lucy; Crowston, Kevin; Kloetzer, Laure; Ponti, Marisa (Ed.)
    In the era of rapidly growing astronomical data, the gap between data collection and analysis is a significant barrier, especially for teams searching for rare scientific objects. Although machine learning (ML) can quickly parse large data sets, it struggles to robustly identify scientifically interesting objects, a task at which humans excel. Human-in-the-loop (HITL) strategies that combine the strengths of citizen science (CS) and ML offer a promising solution, but first, we need to better understand the relationship between human- and machine-identified samples. In this work, we present a case study from the Galaxy Zoo: Weird & Wonderful project, where volunteers inspected ~200,000 astronomical images—processed by an ML-based anomaly detection model—to identify those with unusual or interesting characteristics. Volunteer-selected images with common astrophysical characteristics had higher consensus, while rarer or more complex ones had lower consensus. This suggests low-consensus choices shouldn’t be dismissed in further explorations. Additionally, volunteers were better at filtering out uninteresting anomalies, such as image artifacts, which the machine struggled with. We also found that a higher ML-generated anomaly score that indicates images’ low-level feature anomalousness was a better predictor of the volunteers’ consensus choice. Combining a locus of high volunteer-consensus images within the ML learnt feature space and anomaly score, we demonstrated a decision boundary that can effectively isolate images with unusual and potentially scientifically interesting characteristics. Using this case study, we lay important guidelines for future research studies looking to adapt and operationalize human-machine collaborative frameworks for efficient anomaly detection in big data. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  3. Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images. 
    more » « less
  4. ABSTRACT We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∼5 × 104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O iii] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two apec thermal populations (∼0.80 and ∼0.10 keV). We find a bubble age >2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with $$P_{\textrm {kin}}/L_{\textrm {bol}}\sim 0.8~{{\ \rm per\ cent}}$$, which may be overestimated given the recent Lbol variation. [O iii] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∼780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system. 
    more » « less
  5. ABSTRACT We study the bar pattern speeds and corotation radii of 225 barred galaxies, using integral field unit data from MaNGA and the Tremaine–Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star-forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for $$\mathcal {R}$$, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars ($$\mathcal {R} \lt $$ 1.0; 11 per cent of our sample), fast bars (1.0 $$\lt \mathcal {R} \lt $$ 1.4; 27 per cent), and slow bars ($$\mathcal {R} \gt $$ 1.4; 62 per cent). Simulations show that $$\mathcal {R}$$ is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with Lambda cold dark matter. However, the median value of $$\mathcal {R}$$ is still lower than what is predicted by simulations. 
    more » « less
  6. Abstract Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these systems requires ever larger samples, which can be difficult (even impossible) to select from individual surveys. We use the new platform ESA Datalabs to assemble a catalog of interacting galaxies from the Hubble Space Telescope science archives; this catalog is larger than previously published catalogs by nearly an order of magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble Source Catalog. We employ a combination of automated visual representation and visual analysis to identify a clean sample of 21,926 interacting galaxy systems, mostly with z < 1. Sixty-five percent of these systems have no previous references in either the NASA Extragalactic Database or Simbad. In the process of removing contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary disks, and “backlit” overlapping galaxies. We briefly investigate the basic properties of this sample, and we make our catalog publicly available for use by the community. In addition to providing a new catalog of scientifically interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate substantial archival analysis without placing a high computational or storage burden on the end user. 
    more » « less
  7. ABSTRACT We present detailed morphology measurements for 8.67 million galaxies in the DESI Legacy Imaging Surveys (DECaLS, MzLS, and BASS, plus DES). These are automated measurements made by deep learning models trained on Galaxy Zoo volunteer votes. Our models typically predict the fraction of volunteers selecting each answer to within 5–10 per cent for every answer to every GZ question. The models are trained on newly collected votes for DESI-LS DR8 images as well as historical votes from GZ DECaLS. We also release the newly collected votes. Extending our morphology measurements outside of the previously released DECaLS/SDSS intersection increases our sky coverage by a factor of 4 (5000–19 000 deg2) and allows for full overlap with complementary surveys including ALFALFA and MaNGA. 
    more » « less
  8. ABSTRACT Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by humans (e.g. ‘#diffuse’), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting anomalies to a particular researcher. Our approach is 100 per cent accurate at identifying the most interesting 100 anomalies (as judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised methods require new large labelled data sets for practical use in astronomy. To help the community benefit from our pretrained models, we release our fine-tuning code zoobot. Zoobot is accessible to researchers with no prior experience in deep learning. 
    more » « less
  9. ABSTRACT Galaxy Zoo: Clump Scout  is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a data set containing 3561 454 two-dimensional points, which constitute 1739 259 annotations of 85 286 distinct subjects provided by 20 999 volunteers. Using this data set, we identify 128 100 potential clumps distributed among 44 126 galaxies. This data set can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator 
    more » « less
  10. Abstract Giant, star-forming clumps are a common feature prevalent among high-redshift star-forming galaxies and play a critical role in shaping their chaotic morphologies and yet, their nature and role in galaxy evolution remains to be fully understood. A majority of the effort to study clumps has been focused at high redshifts, and local clump studies have often suffered from small sample sizes. In this work, we present an analysis of clump properties in the local universe, and for the first time, performed with a statistically significant sample. With the help of the citizen science-powered Galaxy Zoo: Hubble project, we select a sample of 92 z < 0.06 clumpy galaxies in Sloan Digital Sky Survey Stripe 82 galaxies. Within this sample, we identify 543 clumps using a contrast-based image analysis algorithm and perform photometry as well as estimate their stellar population properties. The overall properties of our z < 0.06 clump sample are comparable to the high-redshift clumps. However, contrary to the high-redshift studies, we find no evidence of a gradient in clump ages or masses as a function of their galactocentric distances. Our results challenge the inward migration scenario for clump evolution for the local universe, potentially suggesting a larger contribution of ex situ clumps and/or longer clump migration timescales. 
    more » « less